Skip to content

Join the Antarctic Fire Dept

August 19, 2015


At a fan’s request, I’m sharing more about my brief stint with the Antarctic Fire Department. Yes, there is a fire department in McMurdo–you can see above, the Antarctic medallion on the truck, and Ob Hill in the background. The Christmas tree ornament on the pole was cute–it was December after all.

Intrigued, I asked the fire fighters to see more of the equipment on the trucks, and how they dig through the snow. Little did I know how I’d end up(!)

The trucks of course carry long spools of hose. Some of the trucks have those triangular tractor wheels to get through any snow or mud. That time of year, mud was what you mainly saw in McMurdo.


And of course they have stretchers, with extra padding for warmth, to rescue people out of the snow.


And worse–out of an icy crevasse!


This triangular stand with pulleys is designed ingeniously to lift a trapped hiker out of a narrow crack in the ice. The pulleys distribute the force so that anyone with minimal muscle strength can pull the victim up. Even me!


That went so well, the next thing I knew–I was drafted into the fire training program! With a room upstairs “burning” and a body to rescue, there was no time to waste.


The suit weighed a ton, especially with that oxygen tank. It made those Antarctic red coats (upper right) feel like nothing. That black thing in back is the motion sensor–you have to “dance the Macarena” the whole time, or an alarm goes off in case you passed out.


There’s my partner. She and I had to climb up the stairs through “smoke” –I was just scared I would fall over, with all the weight. We crawled along the floor, without stopping lest the sensor go off. I found the “body” under a bed (apparently kids do that) and she dragged it out. We did so well, they told us there are always job openings in the department. Who knows where I’d be now, if I didn’t have my seat out on the Herc scheduled the next day.



A Day at London’s Natural History Museum

August 3, 2015

1_NHMThe most amazing experience I had in London was visiting the Natural History Museum. Built in 1881–just a few years after Darwin’s Origin of Species–this extraordinary building (by Alfred Waterhouse) intended to represent a “cathedral of nature.” The columns of this ornate building purposely differ in style, representing the diversity of natural life. Animals of all different species perch upon the windows.


The animals exhibit “natural” behaviors–the lion (above, center) is entwined by a python. Inside the vast edifice (below) amid zig-zagging stairs out of Hogwarts, monkeys climb the arch.


Above all the exhibits and thousands of visitors, the cathedral ceiling represents the most important of life forms: all different kinds of plants.


Darwin gets his statue, which visitors crowd to share his photograph.


Darwin also gives his name to the Darwin Centre, the super modern laboratory (2009) next door. This laboratory actually faces the visitors’ gallery, where the public can watch live action in three floors of labs, like the scene in Jurassic Park.


So what goes on in these labs? Anne Jungblut, Antarctic microbial explorer, gave me a tour. I had met Anne in Antarctica during my adventure there in November. Anne writes a blog about cyanobacteria, on which she is a world-class authority, as well as the school-children’s Microverse project. In Antarctica, we were sampling cold-adapted cyanobacteria. Here, Anne shows some of her samples, which she cultures to study their photosynthesis and phylogeny.


Today, phylogeny means DNA. Below, Anne and her student study DNA of cyanobacteria, which she obtains from all parts of the world, from the Dry Valley Lakes to Lake Biwa, Japan.

But beyond our modern samples–What about the museum’s 80 million samples collected since the mid nineteenth century?


Insects, plants, and animal pelts abound. Some find homes in modern collection boxes; other remain shelved in towering wooden cabinets, even cardboard boxes. Historic expeditions left samples–even William Colbeck’s famous mission to rescue Scott’s ship from Antarctica brought back cyanobacteria, now stored in boxes in the museum.

And all these old dried samples have DNA.


These dried plants, “Flora of the British Isles,” include (middle) Primula veris, the common cowslip, from 1942. How do these cowslips relate to plants of modern Britain? Are they the same species, or different? Can we map how species distributions change over time–and climate change? And what about their microbes? We now know those plants harbor a treasure trove of microbes in their veins, and in the soil trapped in their dried roots.
All we need is hands to explore them. I hope to send a Kenyon student there on an Oden fellowship, next summer, to help unearth this treasure.

Antarctic Crab Farms Hair

July 7, 2015

This Antarctic crab gets my vote for the most bizarre summer lifestyle. The crab grows in hydrothermal vents, part of the ocean floor where volcanic heat drives hydrogen-rich molecules up through a super-heated spring. Hydrogen sulfide, methane etc. Bacteria can oxidize these molecules for food; such bacteria inhabit the guts of tube worms and giant clams that have evolved to support them, and can eat nothing else.

But the crabs have a different twist–they farm the vent bacteria on the hairs of their claws. Their claws look furry from all the bacteria-covered hair; and the crab scarfs off the bacteria.

According to the journal, the bacteria actually fix CO2 like plants do. Instead of photosynthesis, the bacteria oxidize reduce molecules such as methane. There is plenty of oxygen at the ocean floor, from phototrophs at the ocean surface; the water is so productive that excess oxygen reaches the floor. That won’t always be true though, as human-made “dead zones” are expanding throughout the ocean.

In order to survive, the crab needs to stay within a narrow range of habitat between the vent (400 degrees C) and the near-freezing water at the bottom. So the crabs crowd together, jockeying for the best spot. An epic survival story, for sure.

Prove That I Am Sentient

June 14, 2015


Prove to the court that I am sentient.

Picard’s famous challenge from STNG Measure of a Man inverts the question most asked about AI, “Prove it’s sentient.” There is a growing drumbeat about the Singularity, the day the machines take over. My own take is the Mitochondrial Singularity, the argument that the singularity is ongoing, ever since humans invented letters and numbers; or, to be fair to artists, perhaps when they drew the first image on the wall of a cave. As we outsource our abilities, eventually we’ll be left with the mitochondrial role of powering the machine; that is, turning it on.

Another sign of our growing mitochondrialization is the appropriation of our organic tissue nature, our “water ware”, into machines. The proto-mitochondrial bacteria, after all, had all sorts of useful genes that got appropriated into their host nuclei–for the host benefit, or the benefit of the mitochondrion, the question is unclear.

In our human context, twentieth century robot builders would have scorned the idea that human tissue might have properties useful for a silicon ship. Human tissue is wet and slimy, nothing like the clean, dry shininess of silicon. Yet Stanford scientist are now building computers out of water, in which water flow replaces electron flow in generating logic gates. At least, that’s what I understand from the PacMan-like image above. “Little bags” of water, for logical manipulation of matter. Um, how are those not like human cells?

More to the point, NIH is building Tissue Chip for Drug Screening. The ideas is to incorporate human tissues into a computer chip and design instruments to test the effect of toxins. A more advanced idea is Organs-on-Chip, funded by DARPA and others. Known officially as the innocuous-sounding mouthful Human Toxicology Project Consortium, the stated goal is to model organs, even a “human-on-a-chip” using stem cells. And of course, we’re all about building organs for transplant. Printing out organs on our cute 3D printer.

Excuse me–Human on a chip? Does the word “being” fit in there, as in, “human being on a chip”? Even with the best of intentions, what does this mean?

Suppose we wish to test toxicity and brain exposure, the effect of toxins on brain function, cognition, affect etc. Brain on a chip? Prove to the court that I am (not) sentient.

At the climax of Data’s trial, Maddox argues (spoiler) that Data is a machine, a Pinocchio with a human pulling the strings. Data is “an idea conceived of by the mind of a man. Its purpose is to serve human needs and interests. It’s a collection of neural nets and heuristic algorithms. Its responses dictated by an elaborate software program written by a man. Its hardware built by a man. And now a man will shut it off.”

Any mitochondrion can shut off a cell. In fact, it happens all the time; as our mitochondria mutate, they shut down the cell, causing disease or aging. Likewise, we humans slide down our own mitochondrial vortex. Then what will our sentience mean?

Grow a New Limb

June 7, 2015

This remarkable report claims that scientists have built a new limb from the collagen matrix of a rat’s paw. They started with the limb from one rat, and used a detergent to wash away all the cells from the collagen that holds the limb’s shape. Presumably they kept the bone too; I’ve not yet got through the paywall for the details.  Then they added cells from a new rat, and the cells grew out, forming all the requisite muscle and blood vessels. A graft to the new rat behaved as native tissue. It doesn’t sound like the researchers connected nerves yet, but still impressive.

While this feat sounds remarkable, in fact, collagen matrix (a natural mesh of protein) has been used for many years to restore tissue; for example, receded gum tissue. Collagen from a cadaver is stripped of cells (which harbor the MHC genes and proteins of tissue type) then pasted onto the roots of your teeth. New gum cells migrate into it, restoring the gums.

Who knows; maybe a head transplant‘s not so far away. We know a lot of political candidates who could use one. The ultimate answer to climate change denial.  More on climate change this week.

AI on Inside Story

May 27, 2015

My appearance on Inside Story didn’t work out (travel mixup–someone confused Kenyon with Ohio State) but still generated some blog discussion on one of our favorite themes:

  • When will computers be as smart as humans?
  • What about their lack of common sense, intuition, and other intrinsically human qualities?
  • What happens to humans once singularity is achieved?

Thoughts, anyone?

Bacterial Time-Turner

May 17, 2015


Bacteria Lab students are wrapping up a paper on “polar aging” of E. coli. What does that mean? Every time a bacterial cell divides, each daughter cell inherits an old pole (preexisting cell division) and a new pole (formed by division). Inevitably, a line of cells inherits an old pole for many generations. In the colony above, the old poles are marked yellow; the new poles are green, and inbetween generations are marked other colors. The white line marks the divide between two half-lineages of the original ancestral cell, for which we don’t know which pole was old or new. A small portion of a colony lineage is diagrammed:


Under certain conditions, the cell with the superannuated pole (yellow) tires out. You can see where the green-yellow cell has given up dividing. The old-pole cell division slows, and the cell eventually dies of old age–despite inheriting a new pole too. It’s like Rowling’s Death Eater that got its head stuck in a time-turner jar, and turned into a baby’s head: half old and half newborn.

Can bacteria ever “reverse” their “polar age”? Not E. coli, we think–but other kinds of bacteria do. Mycobacteria, which cause tuberculosis, grow differently by extending one pole only (Bree Aldridge, Science 2012).

Myco polar

The extending mycobacterial pole makes a newborn cell that accelerates cell division (Age 2) while leaving behind an old-pole cell that pauses (Age 1). But then–in the next generation, the old pole accelerates division–leaving its new pole behind, suddenly old. In effect, a mycobacterium is a time-turner, its young pole growing old and its old pole growing new. Though not an endless loop, the lineage endlessly generates deadly infectious cells showing age-dependent resistance to various antibiotics.

Why do bacteria age? As best we can tell, they age for the same reason humans do. Humans are animals that partition their biomass into an immortal germ line (the sex cells) and a mortal soma (the rest of our body.) The mortal body (the bacterial old pole) “eats death” by inheriting all the mistakes, the misfolded proteins, while keeping the germ line young. In humans, similarly, our brains accumulate the misfolded proteins associated with Parkinson’s and Alzheimer’s. But our germ line (new pole) remains the potential baby, while it’s still part of one’s own body. Like E. coli, we’re all the hapless Death Eater stuck with half a baby.


Get every new post delivered to your Inbox.

Join 86 other followers